\qquad
\qquad

Sir Isaac Newton (1642-1727) was an English physicist and mathematician. Before the age of 30 he formulated the laws of motion and invented calculus. Much of our modern science is based on Newton's

Newton's Laws of Motion

An object at rest will stay at rest unless acted on by an unbalance force. An object in motion will stay in motion unless acted upon by an unbalanced force.

OR

Things keep moving or stay at rest, unless a net force acts upon them.

Law Two - F = ma
The acceleration of an object is proportional to the force acting on it and inversely proportional to its mass.

OR
Force causes acceleration, while mass resists acceleration

Law Three -

Law of Equal and Opposite Forces. Whenever one object exerts a force on another object, the second exert an equal and opposite force on the first.

OR

For every action there is an equal and opposite reaction.

\qquad
Period:

$\begin{aligned} & 1 . \mathrm{F}= \\ & 2 . \mathrm{m}= \\ & 3 \cdot \mathrm{a}= \\ & 4 . \mathrm{v}= \\ & 5 \cdot \mathrm{D}= \\ & 6 \cdot \mathrm{p}= \\ & \hline \end{aligned}$		125 kilograms $23 \mathrm{kgm} / \mathrm{s}$ $3 \mathrm{~m} / \mathrm{s}^{2}$ 29 meters/sec 228 meters 6 newtons
1. Inertia 2. Mass 3. Gravity 4. Net force 5. Force	A. An actio B. Force pu other. C. The amo D. Total of E. Ability of motion.	causes motion. bject toward each tter in an object forces on an object. to resist change of

Number these from least (1) to most (5) inertia.

A baseball	A small car	A truck	A feather	A large train
Number these from least (1) to most (5) momentum.				
Fast car	Parked truck	Slow car	Fast baseball	Fast feather

A sled is being pulled to the left by 5 dogs, each dog pulling with 6 Newtons of force. Find the net force.

If a person pulls on a cart to the right with a force of 10 N and a second person pulls to the left with a force of 3 N , what is the net force (+ direction) on the cart?

A 2 N and 6 N force pull on an object to the right and a 4 N force pulls to the left a 0.5 kg object. What is the net force on the object?

A 20 kg bike accelerates at $10 \mathrm{~m} / \mathrm{s}^{2}$. With what force was the person pedaling?

If a person is pushing a cart with a force of 40 Newtons and it accelerates at $0.5 \mathrm{~m} / \mathrm{s}^{2}$, what is the mass of the cart?

What is the acceleration of a 3 kg rock that is thrown with a force of 18 N ?

